IX Convegno dell'Associazione Rete Italiana LCA

La sostenibilità della LCA tra sfide globali e competitività delle organizzazioni

Emissioni provenienti dall'allevamento suinicolo: valutazione dell'impatto ambientale considerando l'utilizzo di uno scrubber per il trattamento dell'aria

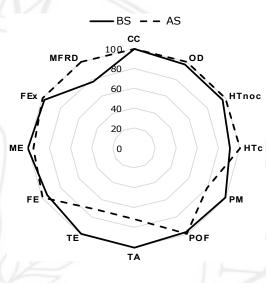
Conti C., Costantini M., Bacenetti J. (jacopo.bacenetti@unimi.it), Ganzaroli A., Guarino M.

Introduzione: In Italia sono presenti circa 25.000 aziende suinicole, per un totale di 8,4 milioni di capi. Gli allevamenti suinicoli sono tra i principali responsabili delle emissioni NH₃, PM e odori. Diverse soluzioni sono state identificate per mitigare queste emissioni, tra le più promettenti di queste vi sono gli scrubber.

Scopo: Il progetto LIFE-MEGA ha l'obiettivo di valutare la variazione degli impatti derivanti dall'utilizzo di un prototipo di scrubber a umido con una soluzione acida, a base di acido citrico, installato in Lombardia e in Catalogna.

FU: 1 kg di peso vivo

SB: from cradle to farm gate


Vs. Filtro a secco Scenario alternativo

L'azienda in prova: ciclo chiuso (fase di riproduzione e di ingrasso, 9760 capi (700 scrofe). SAU di 100 ha, coltivati a mais da granella completamente utilizzato per alimentare i suini.

LCI: Le emissioni di CH₄, NH₃ e N₂O e composti azotati che sono state stimate secondo le linee guida dell'IPCC (IPCC, 2019) ed EEA (EEA, 2019). 80% di efficienza di abbattimento dell'NH₃

Unità	Valore
N°	9760
N°	2895
Kg	167
MWh/y	690
I/y	86160
ton/y	5069
	N° N° Kg MWh/y I/y

Risultati: AS presenta un impatto inferiore per PM (-20%), TA (-28%), TE (-29%) e ME (-5%) ma, a causa di consumo energia e di risorse per la costruzione, e il funzionamento dello scrubber, ha un impatto superiore per OD, HTc, HTnoc, POF, FE, FEx, MFRD. CC varia dello

Conclusioni: Possibili ottimizzazioni grazile $\frac{0.2\%}{0.2\%}$ (i) riduzione dei consumi di acqua e acido citrico, (ii) valorizzazione del citrato di ammonio (prodotto da NH₃ e acido citrico) come fertilizzante azotato (da -0,3% a -4%) (iii) funzionamento «smart» a seconda della qualità dell'aria

